Heat-Related Illness in North Carolina: Who’s at Risk?

Dr. Chris Fuhrmann

NOAA’s Southeast Regional Climate Center
Department of Geography
University of North Carolina at Chapel Hill

North Carolina Public Health Association Meeting, September 2012, New Bern, NC
Why Heat?

- The #1 weather-related killer (~700 deaths annually across the US; more than from floods, lightning, tornadoes, and hurricanes combined)

- Heat stroke is deadly; mortality rates exceed 80%; about 15% of those who survive heat stroke suffer impairments to the nervous, renal, or respiratory system

- Heat-related illness is entirely preventable with access to air conditioning and aggressive public health messaging and education

- Many locations (including NC) are expected to see an increase in temperature and in the intensity, frequency, and duration of extreme heat events due to climate change
Heat-Health Research and Activities in NC

- A set of collaborative projects focused on the prevention of heat-related morbidity in North Carolina by reducing vulnerability

- Vulnerability = sensitivity, exposure, coping capacity

- Reducing vulnerability involves

 - *an understanding of intrinsic sensitivities (identifying and mapping at-risk groups and communities)*

 - *accurate and timely prediction of exposure (heat advisories and warnings)*

 - *building adaptive capacity (strategic planning, response plans)*
North Carolina Disease Event Tracking and Epidemiologic Tool (NC DETECT)

Follows a state-wide mandate for near-real time ED data
Rate of ED visits (per capita) for HRI by county from 2007 to 2008

Total Visits:
Urban 1186
Rural 1404 (+218)

Annual Visit Rate (per 100,000):
Urban 13.0
Rural 15.6 (+2.6)

Age distribution of per capita ED visits for HRI between urban and rural counties.
Possible at-risk groups

Agricultural workers*

*NC accounts for 57% of all US heat-related deaths among crop workers from 1992-2006

Young Athletes
Socioeconomic Indicators of Heat-Related Morbidity in North Carolina

- Examines the statistical relationships between HRI ED visits and various socio-economic and land cover variables
- Analysis conducted by region and climate division
- Socio-economic data retrieved from the American Community Survey (2006-2010); land cover and cropland variables retrieved from the 2008 National Land Cover database
- Relationships evaluated using Pearson correlations and regression analyses (GWR and stepwise regression)
<table>
<thead>
<tr>
<th>2006 – 2010 ACS 5 Year Estimates</th>
<th>Potential Relationship to HRI</th>
<th>Literature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographic: (Age, Race, Gender)</td>
<td>Populations most vulnerable to heat</td>
<td>Harlan et al. (2006); Chow et al. (2011); Kilbourne (1997); Knowlton et al. (2009)</td>
</tr>
<tr>
<td>Socioeconomic: (Nativity, Educational Attainment, Household Income, Population movement)</td>
<td>Agricultural workers/social isolation, Wealth or poverty</td>
<td>Fouilett et al. (2006); Chow et al. (2011); Klinenberg (2002); Semenza et al. (1999),</td>
</tr>
<tr>
<td>Built Environment: (Median year home built, Mobile Home Density)</td>
<td>Wealth or poverty/Social isolation/Rural or Urban</td>
<td>Meehl & Tebaldi (2004)</td>
</tr>
<tr>
<td>National Land Cover Database (2008)</td>
<td>Potential Relationship to HRI</td>
<td>Literature</td>
</tr>
<tr>
<td>Built Environment: (Developed Land)</td>
<td>Rural or Urban/Geographic Locations</td>
<td>Ruddell et al. (2009); Buyantuyev and Wu (2009); Oke (1997)</td>
</tr>
<tr>
<td>Cultivated Crops: 30 total crops (e.g. tobacco, corn, apples, oats, peanuts)</td>
<td>Agriculture workers/Microclimate of fields</td>
<td>Ruddell et al. (2009); Buyantuyev and Wu (2009); Oke (1997)</td>
</tr>
<tr>
<td>Vegetation: Deciduous, Evergreen Forest</td>
<td>Cooling potential/Rural areas</td>
<td>Ruddell et al. (2009); Buyantuyev and Wu (2009); Oke (1997)</td>
</tr>
</tbody>
</table>
Where is HRI geographically located?

<table>
<thead>
<tr>
<th>Variables</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Developed Land</td>
<td>-0.40</td>
</tr>
<tr>
<td>Evergreen Land</td>
<td>0.38</td>
</tr>
<tr>
<td>Cropland</td>
<td>0.34</td>
</tr>
</tbody>
</table>

*p-values < 0.05

Rural populations of North Carolina are at increased rates for heat related illness compared to urban populations.
Crops and Heat Stress
Is poverty associated with increased HRI?

<table>
<thead>
<tr>
<th>Variables</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobile Homes</td>
<td>0.45</td>
</tr>
</tbody>
</table>

Are specific populations at greater risk HRI?

<table>
<thead>
<tr>
<th>Variables</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pop over 65</td>
<td>0.02</td>
</tr>
<tr>
<td>Pop over 85</td>
<td>-0.08</td>
</tr>
<tr>
<td>Foreign Born</td>
<td>-0.18</td>
</tr>
</tbody>
</table>

*p-values < 0.05
North Carolina State Emergency Response Team (SERT)

Tactical Heat Emergency Response Plan

North Carolina Division of Public Health

North Carolina Division of Emergency Management
NC Heat Plan Response Trigger Guide

State Emergency Response Team determines status for each state / county / division based on judgment.

State Emergency Response Team deploys available resources through ICS.

Communicate response status to State Emergency Operations Center and agree priorities for critical resources.

<table>
<thead>
<tr>
<th>NWS Trigger Level</th>
<th>State Actions</th>
<th>County Actions</th>
</tr>
</thead>
</table>
| Heat Advisory | • Outreach to local health agencies
 • Outreach to local emergency mgrs.
 • ID locations of vulnerable populations | • Review local emergency heat response plan
 • Notify all responsible emergency heat response plan agencies
 • Identify locations of vulnerable populations
 • Prepare cooling centers
 • Contact Operation Fan/Heat Relief
 • Execute outreach to public |
| Excessive Heat Watch| • State Emergency Operations Center Activated @ Level 3
 • Outreach to public from Joint Information Center
 • Public Health Coordinating Center Activated
 • Public Health Preparedness Offices Alerted
 • Governor’s Hotline Activated | In Addition to Heat Advisory
 • Possible county emergency operations center activation
 • Initiate cooling center plan
 • Initiate fan distribution plan |
| Excessive Heat Warning| • Request Emergency Declaration from Governor’s Office
 • Public Health executes risk assessments & performs predictive modeling | In Addition to Heat Watch
 • Continue to manage emergency heat response and be prepared to escalate as required |

- Goal is to evaluate the effectiveness of the heat advisory and warning thresholds used by NWS Raleigh in accounting for summer heat morbidity.

- Following the methods of Dixon (1999), will investigate alternative thresholds by creating a cost-benefit ratio whereby the benefit of lowered morbidity is compared to the cost of increased issuance of advisories and warnings.
Heat-Related Products from the National Weather Service

- **Heat Advisory** – issued when the heat index is expected to reach between 105-109 degF for 2 or more hours OR is expected to reach between 102-105 degF for 3 or more consecutive days

- **Excessive Heat Warning** – issued when the heat index is expected to reach 110 degF or higher for any duration (considered a “dangerous situation”)
Raleigh NWS Heat Products and HRI ED Visits (Primary and Secondary) in the Raleigh NWS County Warning Area (JJA, 2007-2010)

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Sum</th>
<th>Daily Avg</th>
<th>Max</th>
<th>Min</th>
<th>% of ED Visits</th>
<th>% of Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>HI Below 100°F</td>
<td>1502</td>
<td>5.7</td>
<td>22</td>
<td>0</td>
<td>40.5</td>
<td>77.2</td>
</tr>
<tr>
<td>At least 100°F but below HA</td>
<td>854</td>
<td>11.7</td>
<td>39</td>
<td>3</td>
<td>23.0</td>
<td>12.5</td>
</tr>
<tr>
<td>Heat Advisory*</td>
<td>1043</td>
<td>26.7</td>
<td>54</td>
<td>4</td>
<td>28.1</td>
<td>8.4</td>
</tr>
<tr>
<td>Excessive Heat Warning**</td>
<td>313</td>
<td>46.6</td>
<td>69</td>
<td>25</td>
<td>8.4</td>
<td>1.9</td>
</tr>
<tr>
<td>Total</td>
<td>3712</td>
<td></td>
<td></td>
<td></td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

*No Advisories issued JJA 2009
**No Warnings issued JJA 2008 and 2009
Summary and Recommendations

- Rural populations in NC may be most at-risk for HRI
 - Strong relationship with cropland/agriculture, but no relationship with minority populations
 - Strong relationship with mobile homes

- Recreational heat stress is prevalent across NC, particularly with organized/interscholastic sports

- Heat wave versus non-heat wave morbidity
 - Are at-risk groups the same?
 - How does this affect our response plans?
 - Research need: Long-term exposure to increasing temperatures versus short-term exposure to extreme temperatures

- Consider other public health consequences of heat: violence, depression, suicide, alcohol/drug use, productivity
Acknowledgements

- Dr. Chip Konrad and Maggie Kovach, Southeast Regional Climate Center, UNC-Chapel Hill
- Dr. David Richardson, Gillings School of Global Public Health, UNC-Chapel Hill
- Conor Harrison, Geography Dept, UNC-Chapel Hill
- NC-DETECT (Anna Waller, Amy Ising, Heather Vaughn-Batten)
- Climate Change and Public Health Working Group
- NC Division of Public Health
- NC Department of Labor
- National Weather Service Forecast Office, Raleigh, NC
Thank-you!

Contact:
Chris Fuhrmann, PhD
Regional Climatologist
Director of Applied Research
Southeast Regional Climate Center

fuhrmann@unc.edu
Tel: 919-843-2704